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References are [Kup], [Wal85|, [Hat78], [Wei.

Here we will give the definition of Waldhausen K-theory. The defintion of K is at this point
classical, for a ring at least it is

Ko(R) = ({finitely gen projective R modules} /iso, &)™

where + denotes the group completion functor sending a commutative monoid to its completion. There
were definitions of K; given for a ring which arrise when talking about the Whitehead torsion in the
s-corbordism theorem given by

K;(R) = colim, H, (GL,(R))

and it was noticed that there was an exact sequence [Weil, 11.6.4.1, I11.3.2]
Kl(Fp) — Kl(Z(p)) — Kl(Q) — K()(]Fp) — Ko(Z(p)) — Ko(@)

and it was conjectured that this should be the begining of the long exact sequence in homotopy groups
for a fibration of spaces
K(Fp) — K(Z(p)) — K(Q)
More generally it was seen that we have an exact sequence for any ring
Ki(R) = K1(R[1/s]) = Ko(R/sR) — Ko(R) — Ko(R[1/s])

Thus the goal is to define a topological space whose homotopy groups give the K groups.

The way that this is done is to construct a certain simplicial set and then take the geometric
realisation. In Quillens original construction he started with a category, with the extra condition that
it was “exact”. This is sort of a weakening of the notion of abelian. Note that this means that we cant
take the K theory of the category of topological spaces or subcategories as Top is the furthest thing
from abelian (although we can still take the K theory of rings associated to topological spaces). The
innovation of Waldhausen then is to introduce a much weaker categorical structure, minimal in the
extreme, that allows a construction to go through.

Remark. To put a very fine point on it, exactness means that if we want to take K theory for a
category associated to a topological space we have to go through an algebraic category, Waldhausen
means we can stay in the realm of topological spaces (retractions over a space to be exact). Note that
Top itself is not Waldhausen as it is not pointed, however certain over categories of topological spaces
will be.



Remark. Exact categories are just categories with classes of maps that behave like exact sequences,
in particular they have “admissable monomorphisms” which one can think of as the first of two maps
A — B — C which are declared to be admissible sequences.

What is the moral of the Quillen / Waldhausen construction? How could one come up with such
a thing? Maybe its too spectral to understand?

1 Waldhausen Categories

A category is called pointed if it has a zero object, that is an object that is both initial and terminal.

Let C be a pointed category with two subcategories ¢(C),w(C) (subcategories implies closed under
composition). We call the former cofibrations and the latter weak equivalences. We denote cofibrations
with »— in diagrams. Such a category is called Waldhausen if the following are satisfied:

e All isomorphisms are cofibrations and weak equivalences.
e For all A € C we have that the map * — A is a cofibration.

e (Base change)

So if we have A — B a cofibration and A — B any morphism then the pushout exists and the
canonical map C' ~— C' Uy B is a cofibration.

e (Gluing)
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That is if the maps coming out of the page are weak equivalences and the maps vertically down
are cofibrations then the map between the pushouts is a weak equivalence. Note the map along



the bottom is that induced by the universal property of the pushout
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Example. A category that has a zero object and admits all pushouts can be given a cofibration structure
by declaring all morphisms to be cofibrations.

Example. Given a category with cofibrations we can always take two sets of weak equivalences. The
minimal set is the collection of isomorphisms. The maximal set is all morphisms.

Example. Given an exact category in the sense of Quillen then we can define the cofibrations as the
admissible monomorphisms.

Example (Abelian Categories / Modules). Given a (commutative unital) ring R we have the category
of finitely generated R-modules, which is abelian. An abelian category is Waldhausen by taking cofi-
brations to be monomorphisms and weak equivalences to be isomorphisms. Note that this is just taking
the exact category associated to the abelian category and then the associated Waldhausen category.

Example (Finite Sets). The category of finite sets is a Waldhausen category when cofibrations are
injections and weak equivalences are bijections.

Example (Top). Top is not pointed! The initial is the empty set and the final is the one point and
these are not isomorphic.

2 The Simplicial Set

We start with the category [n] given by 0 — 1 — -+ — n, plus compositions of maps and identities.
Then there is an arrow category Ar[n], whose morphisms are commutative squares. Then for any
category C we can form the functor category

Fun(Ar[n],C)

If we further assume that C is Waldhausen we can define S,,(C) as a full subcategory on objects that
satisfy the following

1. F(id;) = 0 the zero object in the Waldhausen category.
2. F((i,4) — (i,k)) is a cofibration for every i < j < k.
3. For i < j < k we have the following diagram

) F((i,5) = (i,k))

F(i,j F(i, k)

F((4,9)=5:9)) F((3,k)=(5:F))

F(j,7) RGOS0 F(j,k)

is a pushout.



This defines a category for each n and we claim then that
Se(C) : AP — Cat

is a simplicial category (a simplicial set that lands in the category of categories). There is a sub
(functor) simplicial category given by wsS,(C) given by taking the same objects and only natural
transformations that are given by weak equivalences. Then wS,(C) is also a simplicial category.

Remark. This simplicial set can also be described as the nerve of some gross diagram category,
which however is simply making all the stuff here more explicit.

The last two are not clear, are they morphisms in the image of the functor or are they arbitrary
morphisms between the things in the image of F? Waldhausen says ”the” maps and so they should be
somehow uniquely the ones under the functor so this is my guess, however its not clear.

2.1 The Shape of the Diagram

Just to make things a bit more explicit. Lets start by investigating the structure of this arrow category
a bit more carefully, as functors out of it can be considered as subcategories in the target “of the same
shape” as the the arrow category.

The objects of Ar[n] are things of the type 0 < 4 é> j < n. Arrows between such pairs are
commuting diagrams of the shape
1
<‘
k

We can think of an object as an interval on a number line and then an arrow will only exist between
this interval and another that is shifted to the right:
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What we need is that the head of the second arrow is after the head of the first and the tail is after
the tail of the first. The lengths ar not related.

Now Ar[n] has exactly ("3?) = w
larger than the first.

For instance for n = 0 Ar[0] is just the singleton category with only the identity. For Ar[1] is is the
following category

objects, that is pairs of numbers where the second is

0 0




along with the identity morphisms. And Ar[2] is

0 ——0 1 1
0 —— 1 1 2
0 —— 2 2 —— 2

We can see the pattern for Ar[3]

0

1

If we relable the objects as bullets then this is the same diagram as
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and so we can see that a functor out of Ar[n| is a diagram of this shape in our category (going up
means adding another diagonal of dots and stiching them into the diagram. Keeping this in mind we
can see further that if we are requiring our diagrams to satisfy the S, conditions then we have that
the diagram is of the form
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the diagonal has to be the zero object by (1), the verticle arrows are cofibrations by (2) and all the
squares are pushouts by (3).

3 Defining K Theory

The Waldhausen K theory of a Waldhausen category C is defined as

K : Waldhausen - Categories — Top



K(C) = QuS.(C)].

The K groups are then given by the homotopy groups of this space. Note that the various K theory
constructions all produce spaces, these spaces are only the same up to weak equivalence. This means
that the space produced is different but the K groups are all the same. Notice also that for n > 0 we
have that

Tn K (C) = Tpi1|wSe(C)].

Example (Rings). As was previously discussed for a ring R we call its K theory the K theory of its
category of finitely generated projective modules, if we dont require projective then [Weid] refers to this
as G.

We want to check that the Ko given by this definition agrees with our expectations. This is clear
from the following lemma: The Waldhausen Kq of C is the abelian group on weak equivalence classes
of objects in C subject to the relations that for every cofibration A — B we declare [B] = [A]+[B U 0]
(this is to be thought of as splitting the ses A — B — B/A). This is sketched in [Wei, 1V.8.4]. The
idea is that for a simplicial space (simplicial set that factors through Top) we know something about
the homotopy groups of the geometric realisation, in particular

1| Xe| = (moX1) /(01 (z) = 02(2)0o (), = € mo(X2))

so the first homotopy group is just the free group on the connected components of the one simplicies
modulo the things coming from the two simplicies. It is then a matter of understanding the one and two
simplicies of the Se construction. The one simplicies are 0 — A — 0, just objects, but with the w we
require our natural transformations to be weak equivalences, so the connected components of this space
1s the weak equivalence classes of objects. Then the two boundary maps are just sending sequences like
A — B — B/A to each of the three objects (indexed 0,1,2). Thus we are just splitting them with the
relations.

Then we can just see that for the cagtegory of projective modules this is the group complete, as all
sequences of projective modules split (universal property of projective).

Example. //Are there any familar spaces that can be constructed this way? How about up to weak
homomtopy... Are all weak homotopy types attainable this way?

4 Defining A Theory

Clearly defined in [Weil EIL.9.1, pg 170, Ex 8.7.1, pg 338]. A theory is refered to as “the K theory of
spaces”. We will start with a topological space, construct a Waldhausen category out of it and then
take the K theory.

Let X be a CW complex, then the category R(X) has as objects CW complexes formed from X
by attaching finitely many cells and such that there is a retraction to X (a map r : ¥ — X such
that r|x = idx). Morphisms are cellular maps that are compatible with the retraction (this ensures it
is pointed). This forms a Waldhausen category where cofibrations are (cellular) inclusions and weak
equivalences are topological weak equivalences (homotopy equivalances because we are in CW). Then
the A theory of X is given by

AX) = K(R(X)).

Example (Of a Point). The category of finite retractive spaces over the point is just the category of
finite pointed CW complezes that have a single 0 cell, (Weibel doesnt include this condition, why is
it superfluous?) with cellular maps (everything retracts onto the point). Note that it is not all CW
complezes, for instance not the line, but up to weak homotopy it is path connected CW complexes. The
question is then what is the difference between wS,(C) and Sy,(Ho(C))?

[Wed, 11.9.1.5] calculates Ko(x) = Z.// include. No higher ones calculated.



Remark. The zero object in this category of retractive spaces is X. It is clearly terminal because any
map to X has to be the retraction for it to be compatible with the retraction. It is initial again because
the retraction ensures a unique inclusion, if you include as another subspace then the retraction would
not fix that subspace.
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